HW07 - VSEPR \& VB

This is a preview of the draft version of the quiz

Started: Aug 8 at 4:51pm

## Quiz Instructions

## Homework 07 - VSEPR \& VB

Question 1

This is the condensed structural formula for acetaminophen, the active ingredient in the over-the-counter medication Tylenol.


What is the molecular formula of acetaminophen?$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}$$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{2}$$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$

| Question 3 | 1 pts |
| :---: | :---: |
| The following s omitted. |  |
| What is the molecular formula of this isomer? |  |
| $\mathrm{C}_{8} \mathrm{H}_{24}$ |  |
| $\mathrm{C}_{8} \mathrm{H}_{16}$ |  |
| O $\mathrm{C}_{8} \mathrm{H}_{18}$ |  |
| $\mathrm{C}_{8} \mathrm{H}_{8}$ |  |


| Question $\mathbf{4}$ |
| :--- |
| Consider the following structure: |
| How many single bonds, double bonds, sigma bonds, and pi bonds (respectively) are represented by this condensed formula? |
| $12,4,12,4$ |
| 15, $4,19,4$ |
| $11,7,18,7$ |
| $15,4,15,4$ |

Question 5

The electronegativity of H is...a lot less than that of $C$.a lot more than that of C .about equal to that of $C$.

## Question 6

© - o

C-N

C-F

## Question 7

1 pts

Consider a 3-atom molecule A-B-A for which B has a total of only four valence electrons - enough to make two bonds. Predict the A-B-A bond angle.$180^{\circ}$$90^{\circ}$$109.5^{\circ}$$120^{\circ}$

| Question 8 |
| :--- | :--- |
| What is the shape (molecular geometry) of $\mathrm{COCl}_{2}$ ? |
| Trigonal pyramidal |
| tetrahedral |
| t-shaped |
| trigonal planar |

## Question 9

$\mathrm{NO}_{3}{ }^{-}$
$\mathrm{SO}_{3}$

O$\mathrm{SF}_{2}$$\mathrm{O}_{3}$

## Question 10

Draw the Lewis structure for $\mathrm{NO}_{2}^{-}$. How many single bonds, double bonds, triple bonds, and unshared pairs of electrons are on the central atom, in that order?$2,0,0,2$$1,0,1,0$$4,0,0,0$$0,0,1,1$$1,1,0,1$

## Question 11

Determine the molecular geometry of the ion $\mathrm{NO}_{2}{ }^{-}$.lineartrigonal planarbent or angulartrigonal pyramidal
none of these

| Question 12 |
| :--- | :--- |
| What is the electronic geometry of $\mathbb{F}_{4}{ }^{-}$? |
| octahedral |
| square planar |
| tetrahedral |
| trigonal bipyramidal |
| square pyramidal |

## Question 13

1 pts

What is the molecular geometry of $\mathrm{IF}_{4}{ }^{-}$?see-sawoctahedralsquare planarsquare pyramidaltrigonal planar

Is $\mathrm{IF}_{4}^{-}$non-polar?No, it is polar.It cannot be determined from the structure.Yes, it is non-polar.

| Question 15 |
| :--- | :--- |
| What is the geometry around the left-most carbon in the molecule $\mathrm{CH}_{2} \mathrm{CHCH}_{3}$ ? |
| linear |
| tetrahedral |
| trigonal planar |
| trigonal pyramidal |

Question 16

Which of the following has bond angles of $90^{\circ}, 120^{\circ}$, and $180^{\circ} ?$$\mathrm{XeF}_{4}$$\mathrm{SF}_{4}$$\mathrm{ICl}_{4}{ }^{-}$$\mathrm{PF}_{6}{ }^{-}$$\mathrm{IF}_{5}$

| Question 17 |
| :--- | :--- |
| A central atom is surrounded by four chlorine atoms. Which of the following combinations is possible? |
| an octahedral electronic geometry and square pyramidal molecular geometry |
| a trigonal bipyramidal electronic geometry and t-shaped molecular geometry |
| an octahedral electronic geometry and tetrahedral molecular geometry. |
| andal electronic geometry and seesaw molecular geometry |

Consider the compound peroxyacetylnitrate, an eye irritant in smog.


Predict the indicated bond angle.
slightly less than $120^{\circ}$$120^{\circ}$$90^{\circ}$slightly less than $109.5^{\circ}$
$109.5^{\circ}$

| Question 19 |
| :--- | :--- |
| Which of the following is a polar molecule? |
| $\mathrm{CCl}_{4}$ |
| $\mathrm{CO}_{2}$ |
| $\mathrm{XeF}_{2}$ |
| $\mathrm{SF}_{4}$ |
| $\mathrm{SO}_{3}$ |

Question 20
1 pts

Which of the following statements about polarity is FALSE?Dipole moments can "cancel," giving a net non-polar molecule.Linear molecules can be polar.Lone (unshared) pairs of electrons on the central atom play an important role in influencing polarity.Polar molecules must have a net dipole moment.
$\mathrm{CF}_{4}$ is a polar molecule.

| Question $\mathbf{2 1}$ |  |
| :--- | :--- |
| Which of the following molecules is nonpolar? |  |
| $\mathrm{BF}_{3}$ |  |
| $\mathrm{CH}_{3} \mathrm{Br}$ |  |
| $\mathrm{NF}_{3}$ |  |$\mathrm{SO}_{2}$

## Question 22

1 pts
$\mathrm{CHF}_{3}$ is (less, more) polar than $\mathrm{CH}_{3}$ because...more, the $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{CHF}_{3}$ is a nonpolar bond.less, the three polar C-F bonds are symmetrical and cancel the dipole moments.less, the tetrahedral geometry decreases the polarity of C-F bonds.
more, the C-F bonds are more polar than the C-I bonds.
less, the $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{CHF}_{3}$ is a nonpolar bond.


O none fit the criteria1,2 , and 32 and 3 only2 only

## Question 24

Which of the following molecules has the largest dipole moment?HBrHCl$F_{2}$HI$\mathrm{H}_{2}$

## Question 25

Classify the molecule $\mathrm{PBr}_{3}$.polar molecule with nonpolar bondsnonpolar molecule with polar bondsnonpolar molecule with nonpolar bondspolar molecule with polar bonds

Which of the following combinations of hybridization and molecular geometry is possible?

O $\mathrm{sp}^{3} \mathrm{~d}$, octahedral$\mathrm{sp}^{2}$, linear$\mathrm{sp}^{3}$, trigonal pyramidal
$\mathrm{sp}^{2}$, tetrahedral

| Question 27 |
| :--- | :--- |
| The sp ${ }^{3}$ hybridization has what percent s character and what percent p character respectively? |
| 15\%, pts |
| 33\%, $67 \%$ |
| $50 \%, 50 \%$ |


| Question 28 |
| :--- | :--- |
| What hybridization would you expect for Se when it is found in $\mathrm{SeO}_{4}{ }^{2-} ?$ |
| $\mathrm{sp}^{2}$ |
| $\mathrm{sp}^{3} \mathrm{~d}^{2}$ |
| $\mathrm{sp}^{3} \mathrm{~d}$ |
| $\mathrm{sp}^{3}$ |

Question 29

| Question 30 |
| :--- | :--- |
| What hybridization would you expect for C in ethyne $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ ? |
| 1 pts |
| $\mathrm{sp}^{2}$ |
| $\mathrm{sp}^{3}$ |
| sp |
| $\mathrm{sp}^{3} \mathrm{~d}$ |


| Question 31 | 1 pts |
| :--- | :--- |
|  |  |

$\mathrm{sp}^{2}$ hybrid orbitals have...trigonal pyramidal symmetry.tetrahedral symmetry.linear symmetry.trigonal planar symmetry.

